
Journal of Mathematical Sciences: Advances and Applications 
Volume 29, 2014, Pages 99-113 

2010 Mathematics Subject Classification: 11B37, 34A09. 
Keywords and phrases: discrete auto-convolution, combinatorial auto-convolution, algebraic 
and differential recurrence equations, discrete linear time-invariant physical systems, 
impulse response function. 
Received June 9, 2014; Revised June 25, 2014 

 2014 Scientific Advances Publishers 

SOLVING SOME FIRST ORDER DIFFERENTIAL 
RECURRENCE EQUATIONS WITH DISCRETE  

AUTO-CONVOLUTION 

MIRCEA ION CÎRNU 

Faculty of Applied Sciences 
Politechnic University of Bucharest 
Romania 
e-mail: cirnumircea@yahoo.com 

Abstract 

A differential recurrence equation consists of a recurrent sequence of 
differential equations, from which a sequence of unknown functions must be 
determined. In this paper, we will present several methods for solving two 
nonlinear (quadratic) first-order homogeneous differential recurrence equations 
with discrete auto-convolution of the unknown functions or their derivatives. 
We use here three types of proofs: The first by mathematical induction, the 
second based on generating function method, and the third by a substitution 
which reduces the differential recurrence equation to the corresponding 
algebraic recurrence equation. We will present these methods on the simplest 
differential recurrence equations with discrete auto-convolution. For the first 
equation, we will determine the solutions that are in geometric progression, 
while the second is solved without any supplementary condition. Finally, we 
present two differential recurrence equations with combinatorial auto-
convolution that are reduced to the first ones by substitutions, and some 
applications of the results from this paper to the discrete linear time-invariant 
physical systems theory are also presented. 
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1. Introduction 

Differential recurrence equations were considered, for example, in 
the papers [8]-[10] and in the author’s books and papers [1]-[6]. In the 
paper [3] and [5], see also the book [1], the author considered a new type 
of such equations, namely, differential recurrence equations with discrete 
auto-convolution. These results were used in [4] to solve an integral 
recurrence equation with auto-convolution, which was then solved in the 
paper [6] in a different manner, namely, using the hybrid Laplace 
transformation. Here the simplest two dual first-order differential 
recurrence equations with auto-convolution are considered and their 
solutions are obtained. While the second equation will be considered here 
for the first time, the first is a particular case of a more general equation, 
considered in [5]. For completeness, this equation will be treated in 
detail, as the second, because the actual treatment will contain many 
changes which give simplifications and clarifications compared to the 
general theory given in [5]. 

2. The Equations 

Being given two sequences of functions ( ) ( ( ) ( ) ( ) )…… ,,,, 10 txtxtxtx n=  

and ( ) ( ) ( ) ( )( ),,,,, 10 …… tytytyty n=  one calls discrete convolution or 

Cauchy product of them (see, for example, [1] and [2]), the sequence of 
functions 
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Particularly, if ( ) ( ),tytx =  the product is called the auto-convolution of 

( )tx  and it is denoted 
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Also, if the terms of the sequence ( ) ( )( )txtx n=  are differentiable 
functions, condition which will be supposed in this paper, one considers 
its derivative ( ) ( )( ).txtx n′=′  In the following, we present the main 
methods to solve the simple “dual” differential recurrence equations with 

discrete auto-convolution ( ) =′ tx ( )tx ∗2  and ( ) ( )( ) .2∗′= txtx  For the first 
equation, we determine the solutions that form a geometrical 
progression, while for the second no condition will be imposed. 

3. A Recurrence Differential Equation with  
Discrete Auto-Convolution 

Theorem 1. The sequence of solutions that form a geometric 
progression of the equation 

( ) ( ) ( ) ,,2,1,0,
0

…==′ −
=
∑ ntxtxtx n

n

n kk
k

 (1) 

is given by the formula 

( ) ( )
( )

,,2,1,0,1
1

0

1
1

…=
+

−
=

+

+
n

Ct
Ctx n

nn
n  (2) 

where 0C  and 1C  are arbitrary constants. 

3.1. Proof of Theorem 1 by mathematical induction 

For ,0=n  the Equation (1) is reduced to ( ) ( ),2
00 txtx =′  hence 

( )
( )

,12
0

0 =
′

tx
tx  with the solution ( )

0
0

1
Cttx

+
−=  and for 1=n  to ( ) =′ tx1  

( ) ( ),2 10 txtx  hence ( )
( ) ,2

01
1

Cttx
tx

+
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′  with the solution ( )
( )
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For ,2≥n  the Equation (1) is reduced to ( ) ( ) ( ) ( )txtxtxtx
n

nn k
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solution 
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For ,2=n  the solution becomes  
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Because the sequence ( )txn  is a geometric progression, we have 
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2
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from which one obtains .02 =C  Therefore,  ( )
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Ctx  and ,0=kC  for .12 −≤≤ nk  

Then we have 
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from which one obtains .0=nC  Therefore, ( ) ( )
( )

.1
1

0

1
1

+

+

+

−
= n

nn
n

Ct
Ctx  

According to the mathematical induction axiom, the solution ( )txn  is 

given by the formula (2). 

3.2. Proof of Theorem 1 by generating function method 

We consider the generating function ( ) ( ) n
n

n
ztxztG ∑

∞

=
=

0
,  of the 

sequence of functions ( ),txn  defined by a formal series. Multiplying 

Equation (1) with nz  and summing, it follows that  

( ) ( ) ( ) .
000

n
n

n

n

n
n

n
ztxtxztx kk

k
−

=

∞

=

∞

=
∑∑∑ =′   

Considering the formula of the product of the power series, one obtains 

the differential equation ( ) ( ),,, 2 ztGztGt =
∂
∂  with the solution 

( ) ( ) ,1, zCtztG
+

−=  where ( ) n
n

n
zCzC ∑

∞

=
=

0
 is a constant in t. Therefore, 

one obtains ( )[ ] ( ) ,1, −=+ ztGzCt  hence  

( ) .1
01

0 −=
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Using the formula of the product of the power series and identifying the 
coefficients, it results that 
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( ) ( ) ( ) ( ) ( ) .2,0and1
1

000 ≥∀=++−=+ −
=
∑ ntxCtxCttxCt n

n

n kk
k

 (3) 

From the first relation, one obtains ( ) .1
0

0 Cttx
+

−=  From (3), for ,1=n  

it follows that ( )
( )20

1
1

Ct
Ctx
+

=  and for ,2=n  that ( )
( )30

2
1

2
Ct

Ctx
+

−=  

( )
.2

0

2
Ct

C
+

+  Because the sequence ( )txn  is a geometric progression, as in 

the first proof one obtains ,02 =C  hence ( )
( )

.3
0

2
1

2
Ct

Ctx
+

−=  Using the 

mathematical induction axiom, from the relation (3), it follows as in the 
above proof that 2,0 ≥∀= nCn  and ( )txn  has the form (2). 

Remark. Alternatively, this method can be presented as the Z 

transformation method, where ( )( ) ( ) ( ) .1,
0






== −

∞

=
∑ ztGztxztxZ n

n
n

n  The 

same remark can also be made for the proof based on the generating 
function given below in Theorem 2. 

3.3. Proof of Theorem 1 by substitution 

We will use in the Equation (1) the substitution 

( )
( )

,,2,1,0,1 …==
+

n
tx

atx n
n

n  (4) 

where ( )tx  is a differentiable function and na  are real numbers, all of 

which should be determined. Then the Equation (1) becomes successively 

( )
( ) ( ) ( )

( )
( ) ( )

,1,1
2

0
211

0
2 tx

aa
tx
an

tx
a

ttx
an

n
n

n

n
n

n
n

n

n
n

+
−

=
++−

−
+

=
+ ∑∑ =

+
−=

+
− kk

k
k
k

k
k

k x
a   

( ) .1
0

kk
k

−
=
∑=+− n

n

n aaan  



SOLVING SOME FIRST ORDER DIFFERENTIAL … 105

For ,0=n  one obtains the nonzero number .10 −=a  Denoting 

,nn ab −=  the Equation (1) is reduced to the algebraic recurrence 

equation ( ) ,,2,1,0,1
0

…==+ −
=
∑ nbbbn n
n

n kk
k

 and .10 =b  On the other 

hand, for ,0=n  it follows from (1) and (4) that 

( ) ( ) ( ) ,11 0
0

0 txtx
a

Cttx −==
+

−=  hence ( ) ,0Cttx +=  where ( ).00 xC =  

From the lemma below, it follows that ,1
n

n bb =  hence ( ) nn
n aa 1

11 +−=  

and from (4) one obtains the formula (2), where .11 Ca =  

Lemma 3.4. The algebraic recurrence equation 

( ) ,,2,1,0,1
0

…==+ −
=
∑ nbbbn n

n

n kk
k

 (5) 

has the solution 

.,2,1,0,1 …== nbb n
n   (6) 

3.5. Proof of lemma by mathematical induction 

For ,0=n  the equation becomes 2
00 bb =  and has the nonzero 

solution .10 =b  For ,1=n  the equation is obvious and for ,2=n  it 

becomes 2
1202 23 bbbb +=  and has the solution .2

12 bb =  We suppose that 

.1,1 −≤= nbb kk
k  Then the Equation (5) gives ( ) ∑

−

=
+=+

1

1
021

n
nn bbbn

k
 

( ) ,1222 11
1

1
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1

1

n
n

n
n

n
n

n
nn bnbbbbbbbb −+=+=+= ∑∑

−

=

−
−

=
−

k

kk

k
kk  hence ,1

n
n bb =  

.,2,1,0 …=n  

3.6. Proof of lemma by generating function method 

We consider the generating function ( ) n
n

n
zbzG ∑

∞

=
=

0
 of the numerical 

sequence ( ),nb  defined by a formal series. By multiplying Equation (1) 



MIRCEA ION CÎRNU 106

with nz  and summing, we get ( ) .1
000

n
n

n

n

n
n

n
zbbzbn kk

k
−

=

∞

=

∞

=
∑∑∑ =+  

Considering the formula of the power series multiplication, one obtains 

the differential equation ( )[ ] ( ),2 zGzzG =′  which successively takes the 

forms ( ) ( ) ( ) ( )
( ) ( )[ ] ,1

1,2
zzGzG

zGzGzGzGz =
−

′
=+′  and ( )

( ) 1−
′

zG
zG ( )

( ) .1
zzG

zG =
′

−  

By integration, it follows successively that ( )
( ) CzzG

zG ln1ln =−  and 

( )
( ) ,1 CzzG

zG =−  from which one obtains the solution 

( ) =zG ,1
1

0

nn

n
zCCz ∑

∞

=
=

−
 where C is an arbitrary constant. By 

identifying the coefficients in the two expressions of ( ),zG  one obtains 

.n
n Cb =  For ,1=n  we obtain ,1bC =  therefore the solutions nb  of the 

algebraic recurrence equation (5) are given by the formula (6). 

3.7. Reciprocal proof for lemma 

If ,1
n

n bb =  we have ( ) =+=== ∑∑∑
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−

=
−

=
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n
n

n
n
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( ) ,,2,1,0,1 …=+ nbn n  therefore these numbers nb  satisfy the 

Equation (5). 

3.8. Reciprocal proof for Theorem 1 
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,,2,1,0 …=n  therefore the functions ( )txn  satisfy the Equation (1). 
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4. The Dual Equation 

Theorem 2. The solutions of the equation 

( ) ( ) ( ) ,,2,1,0,
0

…=′′= −
=
∑ ntxtxtx n

n

n kk
k

  (7) 

are given by the formulas 

( ) ( ) ( ) ( ),,4
1

011
2

00 CtCtxCttx +=+=  (8) 

( ) ( ) ,,3,2,
1

1
0 …=++= −

−

=
∑ nCCCtCtx n

n

nn kk
k

  (9) 

where nC  are arbitrary constants. 

4.1. Proof of Theorem 2 by mathematical induction 

For ,0=n  the Equation (7) is reduced to ( ) ( )[ ] ,2
00 txtx ′=  hence 

( )
( )

.1
0

0 =
′

tx
tx  By integration, we obtain ( ) ,2 00 Cttx +=  hence it follows 

that the solution is ( ) ( ) .4
1 2

00 Cttx +=  For ,1=n  the Equation (7) 

becomes ( ) ( ) ( ),2 101 txtxtx ′′=  hence ( )
( ) ,1

01
1

Cttx
tx

+
=

′  with the solution 

( ) ( ),011 CtCtx +=  therefore the solutions ( )tx0  and ( )tx1  are given by 

formula (8). For ,2≥n  the Equation (7) becomes ( ) ( ) ( ) +′′= txtxtx nn 02  

( ) ( ),
1

1
txtx n

n
kk

k
−

−
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′′∑  hence ( ) ( ) ( ) ( ),11 1
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n
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+
−′ ∑  

with the solution 
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From this formula, one obtains 
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We suppose that ( ) ( ) .1,,3,2,
1

1
0 −=++= −

−

=
∑ njCCCtCtx j
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( ) ,1,,2,1, −==′ njCtx jj …  hence 
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nnn

n
CCCtCCCCCtCt  

According to the mathematical induction axiom, the solution ( ),txn  

,,3,2 …=n  are given by formula (9). 

4.2. Proof of Theorem 2 by generating function method 

We consider the generating function ( ) ( ) n
n

n
ztxztG ∑

∞

=
=

0
,  of the 

sequence of functions ( ),txn  defined by a formal series. By multiplying 

Equation (7) with nz  and summing, one obtains ( ) ∑∑∑
=

∞

=

∞

=
=

n

n

n
n

n
ztx

000 k
 

( ) ( ) .n
n ztxtx kk −′′  Considering the formula for the product of the power 
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series, one obtains the differential equation ( ) ( ) ,,,
2






∂
∂= ztGtztG  which 

takes the form 
( )

( )
.1

,

,
=∂

∂

ztG

ztGt  By integration, one obtains 

( ) ( ),,2 zCtztG +=  where ( ) n
n

n
zCCzC ∑

∞

=
+=

0
0 2  is an arbitrary 

constant with respect to the variable t. Therefore, we have 

( ) ( )[ ]
2

1
0

2 24
1

4
1,












++=+= ∑

∞

=

n
n

n
zCCtzCtztG  

( ) ( ) .4
1

2
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0

2
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∞

=

∞

=

n
n

n

n
n

n
zCzCCtCt  

Using again the formula for the product of the power series, one 
obtains the following form for the generating function: 

( ) ( ) ( ) ( ) .4
1,

1

122
001

2
0

n
n

n

n

n
n

n
zCCzCCtzCtCCtztG kk

k
−

−

=

∞

=

∞

=
∑∑∑ ++++++=  

By identifying the coefficients in the two expressions of ( ),, ztG  one 
obtains the formulas (8) and (9). 

4.3. Reciprocal proof for Theorem 2 

If the functions ( )txn  are given by formulas (8) and (9), then we have 

( ) ( ) ( ) ( ) ( ) ( )txtxtxtxtxtx n

n

nn

n

kk
k

kk
k

−

−

=
−

=

′′+′′=′′ ∑∑
1

1
0

0
2  

( ) ( ),
1

1
0 txCCCtC nn

n

n =++= −

−

=
∑ kk
k

 

therefore these functions satisfy the Equation (7). 



MIRCEA ION CÎRNU 110

5. Differential Recurrence Equations with  
Combinatorial Auto-Convolution 

Theorem 3. The sequence ( )tyn  of solutions of the differential 

recurrence equation with combinatorial auto-convolution 

( ) ( ) ( ) ,,2,1,0,
0

…=












=′ −

=
∑ ntyty

n
ty n

n

n kk
k k

 (10) 

so that the functions ( ) !ntyn  are in geometric progression, are given by 

the formula 

( ) ( )
( )

,,2,1,0,!1
1

0

1
1

…=
+

−
=

+

+
n

Ct
Cnty n

nn
n  (11) 

where 0C  and 1C  are the constants from Theorem 1. 

Theorem 4. The solutions of the equation 

( ) ( ) ( ) ,,2,1,0,
0

…=′′












= −

=
∑ ntyty

n
ty n

n

n kk
k k

 (12) 

are given by the formulas 

( ) ( ) ( ) ( ),,4
1

011
2

00 CtCtyCtty +=+=  (13) 

( ) ( ) ,,3,2,!!
1

1
0 …=++= −

−

=
∑ nCCnCtCnty n

n

n
nn kk  (14) 

where nC  are the constants from Theorem 2. 

Remark. (1) The Theorem 3, respectively 4, follows by Theorem 1, 
respectively 2, if we make the substitution ( ) ( ) .,2,1,0,! …== ntxnty nn  

(2) The differential recurrence equations with combinatorial auto-
convolution (10) and (12) can also be solved directly using the exponential 
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generating function of the sequence of functions ( )( ),tyn  given by the 

formula ( ) ( ) .!,!,
0









== ∑

∞

= n
ztGn

ztxztE
nn

n
n

 

6. Applications to Discrete Linear Time-Invariant  
Physical Systems Theory 

A discrete linear physical system is a linear operator U which to every 
sequence of functions ( ) ( )( ),titi n=  named input of the system, makes to 

correspond a sequence of functions ( ) ( )( ),toto n=  named output, hence 

( )( ) ( ).totiU =  If the system is time-invariant, namely, the operator U 

permutes with translations, hence ( )( )( ) ( )( ) kkk ,totiU nn ++ =  ,,2,1 …=  

then the system U has a sequence of functions ( ) ( )( ),txtx n=  named 

weighted function or impulse response function of the system, such that 
the system has the discrete convolution form ( ) ( )( ) ( ) ( ).titxtiUto ∗==  If 

V is a second such physical system, having ( ) ( )( )tyty n=  as impulse 

response function, then the system VU  obtained by the series 
connection of the two systems has the sequence ( ) ( )tytx ∗  as impulse 

response function, while the system VU +  obtained by the parallel 
connection of the two systems has the sequence ( ) ( )tytx +  as impulse 

response function. The above results are related to these topics. The 
Theorem 1 gives the impulse response ( )( )txn  of a system U which 

connected in series with itself gives a new system with the impulse 
response ( )( ).txn′  The Theorem 2 gives the impulse response ( )( )txn  of a 

system U obtained by connecting in series with itself the system, which 
has the impulse response ( )( ).txn′  

7. Conclusion 

We presented here simple equations of a new type and some of their 
methods of solving. Because these equations have first order, their 
methods of solving are based on elementary mathematics, hence they can 
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be used in the learning process as a complement to the simplest types of 
ordinary differential equations. We can consider numerous examples of 
differential recurrence equations with auto-convolution. For example, the 
equation considered in the Theorem 1 is only the first of the 96 equations 
given in [5] as examples of the general theory presented there. Besides 
these educational purposes, these new types of differential recurrence 
equations, which can be called hybrid equations, have applications not 
only in the physical systems theory, as stated in the previous section, but 
also in other areas as in seismology, geophysics, computer tomography, 
image processing, probabilities, statistics, queuing theory and more. The 
author hopes that this paper stimulates the solving of more complicated 
differential recurrence equations, possibly of higher order. 
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